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There exist several approaches to description of the tornado. The air column from the 
earth is modelled by a turbulent filament, acting with a given intensity perpendicular to a 
rigid wall [i]. The air column from a storm cloud is described by use of certain additional 
magnetohydrodynamic hypotheses [2]. In recent times a number of numerical models have been 
constructed on the basis of exact Navier--Stokes equations [3-5]. In the present study a 
modified formulation of the Cauchy--Poisson problem of motion of a heavy viscous incompres- 
sible fluid with a surface having a discontinuity in density will be used with two simpli- 
fying assumptions: I) the major inertial force in the column is characterized by a trans- 
verse acceleration; 2) upon the density discontinuity surface the vertical gradient of the 
transverse velocity and the temperature perturbations characterizing the temperature change 
between this surface and the deep fluid layers are specified. Normal vertical and tangent 
radial stresses are absent on this surface. The density discontinuity surface may be a 
water surface, the boundary of an atmospheric cloud, or a boundary marked by a sharp change 
in air density, produced by a storm, volcanic eruption, etc. Evidence in favor of these 
assumptions is found in numerous radar observations of tornadoes, which demonstrate directly 
that the mechanical and convective motions which form the air column are of a turbulent 
nature [6, 7]. These turbulences and certain other factors (oppositely directed wind flows 
at the density discontinuity surface, electromagnetic effects, thermodynamic causes, etc.) 
indicate that the main inertial force in the air column is transverse inertia, with the air 
column itself developing as a result of interaction of the density discontinuity surface 
with turbulent air flows above this surface. This interaction can be modelled by a vertical 
transverse velocity gradient on the discontinuity surface. The cause of the vertical gradi- 
ent remains unspecified, and it is possible to consider indirectly the entire sum of factors 
enumerated above, which apparently [8] cause formation of the tornado. We note that total 
rejection of inertial forces greatly distorts the tornado model, permitting (for a specified 
turbulent load) determination of only one transverse velocity in this complex spatial flow 
[9]. For simplicity we neglect the effect of the earth's surface upon the tornado. Then 
atmospheric tornadoes and oceanic waterspouts will differ only in the values of the hydro- 
and thermodynamic parameters, and can both be described by the following method. 

We assume that a heavy viscous incompressible fluid occupies the volume of space z' < 
~'(r) in a cylindrical coordinate system r',e, z' withorigin onthe unperturbedsurface z'=0 
and axis Oz, directed opposite the force of gravity. The fluid moves under the influence of 
a vertical transverse velocity gradient ~-1~'(r') on the density discontinuity surface z' = 
~' and a temperature differential 0'(r') between this surface and the deep layers of the 
fluid. The quantity ~' in this formulation has the dimensions of stress. It is physically 
equivalent to the transverse tangent stress on a horizontal area intersecting the density 
discontinuity surface. We will assume that other stresses on this area are absent. The 
problem of establishing the steady-state motion of the fluid under the action of these 
factors requires determination of the velocity v = {Vr, ve, Vz} , the difference p' -- p, 
between hydrodynamic and atmospheric pressures, the form of the surface ~' and the differ- 
ence T' between the temperature at a given point and the temperature as z' + -- ~ as functions 
of r' and z' from the system of Navier--Stokes and thermal balance equations (with consider- 
ation of the Archimedean buoyant force) 

(v.V) v + V ( ~  gz')= --~Trg ~- vV2v, Vv=O, (1) 
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with boundary conditions on the surface z" = ~ 

- -  ( 1 / - -  p , )  L 2~t a'~ O, &': ave T '  (2)  

ova , a'.U 

and with the condition that Vr, vo, and T' disappear as z' § ~. The density p, the kine- 
maticviscosity~, ~ = pv, specific heat c, thermal conductivity I, and coefficient of volume 
thermal expansion B of the fluid are considered constant. We take 

(D ' t [ o ,~ p;~'bt" , 
~.) - -  , , ,~,x I , , , '  ( , " ) l ,  o = ~-,  p .... p ,  -~- ~ u, - 0 ,  T = I~T', ( 3 )  

T t 

t ~  a ~ ~ 6 9ttaga P~t~g lt' ~t 
U r -= ' ' u  U 0 ::= U ,  U .  = -  

r = - - - ~  , z = _ _ .  .z , H = ~ ~ ' ? - -  c " ' 

W i t h  s u c h  a c h o i c e  o f  d i m e n s i o n l e s s  v a r i a b l e s ,  upon  s u b s t i t u t i o n  i n  Eqs~ ( 1 ) ,  (2)  t h e  
n o n l i n e a r  t e r m  v Z / r  i n  t h e  m o t i o n  e q u a t i o n  w i l l  h a v e  a c o e f f i c i e n t  o f  u n i t y ,  w h i l e  t h e  r e -  
m a i n i n g  n o n l i n e a r  i n e r t i a l  t e r m s  w i l l  h a v e  t h e  s m a l l  p a r a m e t e r  R a s  t h e i r  c o e f f i c i e n t .  By 
e x p a n d i n g  t h e  b o u n d a r y  c o n d i t i o n s  i n  power  s e r i e s  i n  g ,  we o b t a i n  a s y s t e m  o f  e q u a t i o n s  and 
b o u n d a r y  c o n d i t i o n s  w i t h  a s m a l l  p a r a m e t e r  s t a n d i n g  b e f o r e  t h e  q u a d r a t i c  and h i g h e r  n o n l i n e a r  
t e r m s  ( e x c e p t  f o r  v = / r ) .  We d e n o t e  t h i s  s y s t e m  i n  t h e  f o r m  A ( u ,  R) = RB(u,  R ) ,  u = {u,  v ,  w, 
p, r The operator A contains the term v=/r only in its radial component. The expansion of 
the operator B in powers of the elements of the matrix u and their derivatives begins with 

quadratic terms. Therefore, in the operator equation thus obtained the method of successive 
approximations may be used, if unity is not an eigennumber of the operator L -= (where L is 
the linear operator obtained from A by discarding the nonlinear term). We will assume that 
the parameter R is chosen such that unity is not within the spectrum of the operator L. Then 
for sufficiently small R, the successive approximation process will converge, with the first 
approximation comprising O(R) with respect to the zeroth approximation. For the zeroth 
approximation, to which we will limit ourselves in view of the smallness of R (for 9 m 1 N/m=, 
R m 0.01 for water), we obtain the following equations and boundary conditions: A([, R) = 0, 
i.e., 

e ~ , ,  l,~,, ,, o% f f l  
- -  - -  ~ k 0 ,  = - -  ~ ,J(r) ,  v [  . . . . .  := 0; ( 4 )  
a f t  [ ;" at" r ~ Oz"  u z  b - : o  " -  

_ _  - -  v z O p  ] O ( r u )  am 

ar "a r Or r z az "z := Or r Or + ~ (5) 

-> 7 7 7 , .  -- -#-F - -  T ;  Or a Oz ~ == 

a, .2 { 7 9 7 q -  az" = - - ?  r "7 s  

.B~ : p - -  2 &v a .  , &o aT' o - -7 - i -T7=0 ,  w = O ,  T = @ ( r )  for z = O ,  

u = : T = : O  for z .... ca. 

(6) 

(7) 

(8)  

[io] 
The dimensionless transverse velocity v defined by Eq. (4) coincides with that found in 
in a study of flow without convection. It is equal to (QI/2 being a Legendre function) 

1 x0)(x)Q,..., ' r i +  ,.~--,'-z- dx. (9) 
v a I / r ,  2rx 

0 

Integral representations of the solution of Eqs. (5)-(8) may be constructed with the 
a i d  o f  a H a n k e l  t r a n s f o r m  and h a v e  t h e  f o r m  
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~;t o o  

p == .! Spo (s, z) Jo (rs) ds, 2I' ..... .[ sT o (s, z) Jo (rs) ds, 
0 0 

co 

r o - - ~  eo e~: + ~, r _ e-~l: t.,,,] d z ,  
0 

? ' fir o (. U" (~l" l  Jo (rs) dr, ~o : "r (r) Jo (rs) dr, % = -- ? J r[[ -g;.~'7]] -[- kOzl ) 
0 0 

t ~  [e,(~-~) e_.~l=+:,l] P o = - - 7  f o ( s , - - x )  -- sgn (z A- x) d x - -  
0 

:.: t v " ( r , z ) J l ( r s ) d r ,  
2 " t 

0 0 

u, = ~ ro (s, - -  x) {[2 -F s (z - -  x)l e *(~-:~ -F s(z + x) e -'q:~''t} dx--F 
0 

+ �89 ;~ ( . , -  x){I~ + . (~-x) l  o ' (~- ' )+ i1-  s l .  + xl 1 :~':+"'1 ax, 
0 

oo  

Wo = - -  ~ ,~ 1'0 (s ,  - -  x) {[1 - -  s (z - -  x) ]  e ~(:-~) - -  [ t  -F s l z -t- x [ l  e - * + ' : ' } d x - -  
0 

'i 4 / ,  (s,  - x) [ (z  - x) d ( ' - ~ )  + (z + x) e -'I'+'~'] d~,  
0 

oo 

t 
0 

oooQ tj'§ ~<*'~) = -~ t - ~ - ' ~ j  'po (s, - x) ]o (rs) dxds, R , 
0 0 

r -- ' x),1o 
--~'I t | 

0 0 

Just like the form of the fluid density discontinuity surface, all the characteristics 
of the flow under consideration are composed of perturbations due to turbulent tangent 
stresses on the surface, the temperature differential, and perturbations connected with dis- 
sipation of mechanical energy. 

The general formulas of Eq. (i0) contain as a special case flows corresponding to at- 
mospheric tornadoes and oceanic water spouts. To distinguish such flows, we assume that the 
turbulent tangent stresses ~'(r') and the temperature distribution ~'(r') on the surface z' = 
~' are nonzero over the ranges r'~a' and r'~ b', where they have constant values (--~) and 
@'. In the variables of Eq. (3) 

to(r) == - -1  for r ~ <  a, o)(r) =:= 0 for I ' >  a, a = a'~2/g~("; (11 )  
~ t ~  f o O'(r) = ~O'  : -  O for r--<~ b, "O'(r)= 0 for r > b ,  b - -  ou , ' g~ t " .  (12 )  

We will study the flow components produced by turbulent loading on the surface asymtot- 
ically, assuming that the dimensionless radius a of its field of action is sufficiently 
smaYl. Then from Eqs~ (9), (ii) we find the transverse velocity, which as a + 0 is equal to 
[i0] 

L . . . .  :r,:'O(r" + z" + a~'):: ". (13) 

Introducing this expression into Eq. (i0), we find the Hankel transform for the trans- 
verse acceleration (fl) and the dissipative function (~o) [ii] 
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,~t16, ~2 

q~o .... 192 

a6s"A't ( ,  J ~z- - - a  ~ )  

288 I z" -i- a 

- ' " = - = "  ...... ")1 ~ (s 1 z" -~-a ' )  a-.,' z'-i_~a" 
' ,  - s ( ,  j 1t 

.g" - i -  a 

(14) 

(15) 

(where K n is a Macdonald function of the second sort). 

We introduce Eqs. (14), (15) into Eq. (i0). We then obtain integrals which diverge at 
a = 0. Therefore the major contribution to their asymptote as a § 0 is produced by the 
vicinity of the point x = s = 0, and we may set e -xs ~ i, i -- e -xs ~ xso On this path the 
smooth terms of the asymptote of the integrals of Eq. (i0), determined by turbulent loading 
on the surface, are expressed in terms of elementary functions, while those related to energy 
dissipation are described by a hypergeometric series. Thus, for the corresponding terms of 
the surface ~ we obtain 

~(~) :: , 6 (am_r2)  (16) 
721~ (a 2 "i- r~) ~ ' 

~(1,2) ~?a :~ '3  t ;  --~ ' T '  1 ; - - ~  �9 3072R 0F  ~ , ~  1; r , _F 3.  

F r o m  t h i s  a n d  Eq .  (3 )  i t  f o l l o w s  t h a t  t h e  f r a c t i o n  o f  d i s s i p a t i v e  a s  c o m p a r e d  t o  t u r b u -  

45~ g~fi a ' .  Even if the region encompassed by turbulent pertur- lent perturbations comprises 384 

bations is measured in km, this fraction comprises only a few percent. Therefore dissipative 
energy in the column may be neglected. This is not a result which could be expected before- 
hand, since according to some data [12], atmospheric perturbations in a tornado reach the 
speed of sound. 

Introducing Eq. (12) into Eq. (i0), we define the Hankel transform for the desired 
temperature differential Oo = bOs-~J~(rs). Substituting this function in Eq. (i0), we obtain 
integral representations for the flow characteristics related to thermal convection. Finally 
(without consideration of dissipation) 

oo 

b o y  t = ; ( 1 ' l )  ~ ;(2), ~U,1) = ~ 7 ]x (bs) lo (rs) ds; 
0 

p - -  R~ = p(L~) _R~(L~)f_p2_R~., ,p(~,)_ft~(2)=_ na 5 2 (a §  l i 2 -  r e 
288 2 [(~ + I z I)0" + r"l~/~' 

p(1,~) _ B~(~,~) :~ _ I bO [ z I [ e -q : l Jo  (rs) ,f~ (bs) ds ._ bO 
2 . 2 

0 

(17) 

(18) 

(it is the difference p --R~, and not the function p in accordance with Eq. 
a c t e r i z e s  t h e  p r e s s u r e  i n  t h e  m e d i u m ) ;  

w = iv  (l'1) -k  w (~'), u "/') == ha51 z [ 2 (a -k I z l )~" - r ~ 
1152 [ (a@lz l )2@r j-,. 

oo 

t w ( 1 , t ) _  I bOz t+ . f lZ l e -~Hdl (bs )  Jo(rs)ds; 
8 s 

0 

u = u ( 1 , 0  t_u(e) ' u(~-)= m'aS[re - t - (a+lz l )2 - -31z t (aq- l z l ) ]  
1152 [r ~ -t- (a -I- [ z I )215/z 

(3) which char- 

( 1 9 )  

(20) 

u O l ) _ _ _ _ T b O  -t I z [ ) - -  ( r s ) . f l ( b s ) d s ;  [2s  ~ 
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T = bO .~ e-~ l : lJ  x (bs) Jo (rs) ds. 
0 

(21) 

The integral of Eq. (17) may be expressed in terms of different hypergeometric functions 
depending on whether r or b is the larger. Namely, 

~(1,1) __ 

From this it follows that 

t r:) 

I 
F ~-~-, ---~; t ; - ~  , 

bO 2 
4r - i f - '  

zr ' T '  2; ~ , 
t 

~ ( ~ ' x ) ( ~  -, = ~ 7 i i  I + o  - 7  ' 

r < b ,  

r = b, 

r > b .  

r - - ~  oct. 

( 2 2 )  

(23) 

We will construct an asymptotic formula for the integral of Eq. (20) as b + ~ by inte- 

grating the expression 

S e_aS.f ~ (bs) Jl  (rs) ds _ l , , ) ( a ~ ' + r ~ + b ~ ) _  br 
- ~ w/~ U '~b ~ (~-~ + ~ + ~)~/~ 

0 

two times with respect to ~ from a to ~. As a result we obtain 

U(1,1) --= b~rO (2r 2 -~- 2 b~ -~ z~) ] / r2-~  - b~d - z~" - -  I z [ (r ~ -}- b" -+- 2z "~) 

,6 (r~+b~+~)v~(V,.~+~+,~+~l) 
(24) 

The remaining integrals in Eqs. (18), (19), (21) can be expanded in series of hypergeo- 
metric functions. The expressions obtained are no more obvious than the original ones, and 

will not be presented here. 

We will note the major results and some consequences. 

i. If there act upon the surface of the water or the surface of the density discontinuity 
in the atmosphere in the absence of temperature differentials stationary turbulent tangent 
stresses differing from zero in a region of radius a', where they are constant in value and 
equal to ~, the dimensional characteristics of the flows produced can be obtained after 
transformation to the variables of Eq. (3) in Eqs. (13), (17)-(20), and (24) for 0 = 0: 

2 

= xU x + i x  2 I -  (y + t)~ ' ( l  + x ~ + f-')3/2, 
v!7) ( : / +  ~)~ - 3~ (.~ + t) v(o 2) = ~v  ( 2 5 )  

v (~) gU 2 (1 ,-}- y)" - x 2 p,(~) 2 (y -}- 1) 3 - x ~ 
= ~x ~ +~;  ~ 7)%'~' = p* + pga'y - 2 tz ~ + (y + ,?p/'- e ,  

~,(~) t - x ~ ; ,  r' I z I 0 <~ x,  

~Pa'8~2 PT~ - -  PM~ V =: ~a" T M 
U = ~ = 1152~1~3a, l152~taa, S, ~ "  - -  6a~a '  - -  61aS ~ 

P ~ ~p a'2Q~ pT 2 ~pM ~ ~2a'2 T ~ M S 

288~2 ~ ~ = 2 - ~ 2 S  ~, -~* - -  72gtt2 - -  72g~t2S -- 72g~t2S 2, 

,2 is the area over which the tangent stresses ~ are distributed, T = mS are the where S = va 
net transverse tangent stresses on the surface; M = Ta' is the moment of the turbulent tan- 

gent stresses. 

It follows from Eq. (25) that the vertical velocity in the vicinity of the axis is 
directed upward, opposite the force of gravity. In air columns without a temperature differ- 
ential only ascending flows are possible in this region. The radial velocity in the column 
is equal to zero on the surface of a two-cavity hyperboloid of revolution x 2 + (y + 1) 2 = 
3y(y + i). Within the lower cavity of this hyperboloid (th e upper cavity does not intersect 
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z~C 8=cons ~ ~ z~ 

"  lli 

Fig. 1 

the flow region) the radial velocity is directed toward the axis, while outside the cavity 
it is directed away from the axis of the turbulence. The flow lines on the fluid surface z v = 

~' are in the form of spirals r' = Cexp(~g--/~ 0) (Fig. i, above). Figure ib shows an example of 

the flow line pattern and form of the surface z' = ~' in the plane 8 = const in the vicinity 
of the flow axis. The spatial configuration of the flow lines is close to that of a screw 
thread, along which flow proceeds toward the peak of the column. This is possible only if 
the height of the column increases constantly. The column is thus a mechanism for increase 
in its own height. Infinite increase in column height does not occur for the following 
reason. The hydrod~amic pressure on the surface z' = ~' has a min p' = p, -- Pat r ~ = 0. 
In order that atomization of the liquid into the column not occur, it is necessary that p,~ 
p, since the liquid will not withstand negative pressure. From this and Eq. (25) it follows 
that motion in the column without liquid atomization is possible only under a load with a 
moment M~12~S/2p,/(~p) = ~. For further increase in moment the oceanic waterspout begins 
to operate as a pump, pumping the liquid it atomizes into the atmosphere from its top [12]. 
A case is ~own where a waterspout carried off an entire lake into the atmosphere under such 
conditions [12]. Under dry land conditions with normal atmospheric pressure M,=0.09575 SN- 
m (where S is in m2). The corresponding column ~ight ~** and max~um transverse velocity, 
v8, up to which fluid atomization in the column does not occur have the form ~** --4P* 

2 ]/f2__~, �9 For a column foxed above water these values equal !3 m and 16 m/sec. In an air 

column, where the density decreases by almost i000 times, the height limit ~** of the tornado 
is such that one cannot speak of any marked rarefaction of the air due to turbulent effects. 
The tornado lifts up the dense air of the lower atmospheric layers to a large height, and 
against the background of the rarefied air at this altitude the denser column is easily de- 
tected by radar equipment [13]. The d~ensions of water surface perturbations and the veloc- 
ity field in an oceanic waterspout can be judged from the following example. If at the water 
surface on an area S = 78.5 m 2 (a circle i0 m in diameter) there act turbulent tangent 
stresses with a moment M = 25 N-m, a column of atomized liquid with height ~, = 143.5 m will 
be lifted from the surface. Ahead of this column there is formed a circular funnel 5.3 m 
in depth. The maximum transverse water velocity in such a spout is equal to 53 m/sec. 

It follows from Eqs. (25) and (3) that the vertical velocity on the vortex ~is v(0,z')= 
yU(l + y)-3 reaches a maximum W = ~a'g~,/(108~) at z' = ~' -- a'/2. Even for perturbations 
~, on the water surface of the order of several m the value of W exceeds the speed of sound 
by a factor of several times. This would be unreal under dry land conditions. Therefore 
in a more accurate approach it is necessary to construct a model of the column which con- 
aiders compressibility of the fluid. It is interesting that a column without temperature 
differential practically neutralizes the effect of gravitation upon the liquid which it 
attracts. The pressure and velocity in the column are independent of the acceleration of 
gravity g. 
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2. In the approximation used here (R <<i) the arbitrary axisymmetric temperature per- 
turbations of the density discontinuity surface do not distort the flow transverse velocity 
(Eq. (9))over the entire region occupied by the fluid. This is related primarily to the fact 
that the Archimedean buoyant force produces no projection on the transverse axis. 

3. If the temperature of the fluid density discontinuity surface is given by Eqs. (3), 
(12), we obtain the dimensional form of this surface after transition to the variables of 
Eq. (3) in Eqs. (16), (17), (22), and (23). The surface perturbation on the vortex axis 

t b'~O' (26) 
~' (0) = ~ ,  + 7 " 

I f  t he  ocean  s u r f a c e  t e m p e r a t u r e  i s  lower  than  t h a t  of  the  d e e p e r  w a t e r  l a y e r s  (@' < O) 
and i f  in  Eq. (26) t he  second  te rm i s  s i g n i f i c a n t l y  g r e a t e r  than  the  f i r s t  (which i s  p o s s i -  
b l e  o n l y  when the  t u r b u l e n t  l o a d  a t  the  s u r f a c e  i s  p r a c t i c a l l y  a b s e n t ) ,  then  on t h i s  s u r f a c e  
t h e r e  i s  formed a h o l l o w  c a v i t y  w i t h  the  p r o f i l e  of  Eq. (22 ) .  The c o o l e d ,  u n t w i s t e d  l i q u i d  
s u r f a c e  i s  p r e s s e d  i n t o  the  ocean .  U s u a l l y ,  even a t  low t u r b u l e n t  s t r e s s  on the  d e n s i t y  
d i s c o n t i n u i t y  s u r f a c e ,  the  f i r s t  t e rm d o m i n a t e s  in  Eq. (26 ) .  The s c a l e  of  s u r f a c e  d e f o r -  
m a t i o n  z '  = 5'  in  an a i r  t o r n a d o  due to  h e a t  exchange  i s  e q u a l  to  ] b ' O ' B / 2  I ~ b ' ~ ' [ / 5 4 6  (B ~ 
t / 2 7 3 ~  and f o r  b '  ~ 10 km, [ 0 ' [  ~ 10~ i s  measured  in  t e n s  or  h u n d r e d s  of  m. The s c a l e  
~ ,  of  the  d e f o r m a t i o n  of  t h i s  s u r f a c e  due to  t u r b u l e n t  l o a d i n g  r e a c h e s  t e n s  o f  km ( f o r  a i r  

~ 2-10  - s  k g / m - s e c ) .  T h e r e f o r e  the  c o n f i g u r a t i o n  o f  a t m o s p h e r i c  p e r t u r b a t i o n s  i n  a t o r n a d o  
i s  c h a r a c t e r i z e d  m a i n l y  by the  t u r b u l e n t  t e rm ,  Eq. (25 ) ,  and a p p e a r s  as  a t a l l  na r row  column 
( c o r e )  s e v e r a l  t e n s  of  km h i g h ,  s u r r o u n d e d  in  i t s  lower  p o r t i o n  by a n a r r o w  f u n n e l  27 t i m e s  
s h o r t e r  t h a n  t he  column h e i g h t .  (The f u n n e l  i s  n a r r o w  b e c a u s e  the  t u r b u l e n t  s u r f a c e  p e r -  
t u r b a t i o n s  o f  Eq. (25) d e c r e a s e  w i t h  the  f o u r t h  power o f  d i s t a n c e  from the  a x i s ) .  This  
f u n n e l  i t s e l f  has  a d e p t h  of  s e v e r a l  hundred  m. I t  can be o b s e r v e d  v i s u a l l y  and p r o d u c e s  
s e v e r e  d e s t r u c t i o n  a t  ground l e v e l  [ 1 2 ] .  As ide  from v i s u a l  o b s e r v a t i o n s ,  such  a d e s c r i p t i o n  
of  a t o r n a d o  (5 '  in  a c c o r d a n c e  w i t h  Eq. (25) )  i s  s u p p o r t e d  by r a d a r  o b s e r v a t i o n s  o f  such  
v o r t i c e s  [12,  1 3 ] ,  wh ich  a r e  n o t e d  as  t u r b u l e n t  columns e x t e n d i n g  beyond the  l i m i t s  of  the  
t r o p o s p h e r e  w i t h  a f u n n e l  a t  t he  b a s e ,  many t i m e s  s h o r t e r  than  the column h e i g h t .  F i g u r e  2 
shows a s e c t i o n  o f  the  f u n n e l  ahead  of  a column w i t h  d e n s i t y  0 = c o n s t  in  a c c o r d a n c e  w i t h  
Eq. (25 ) .  The f u n n e l  h e i g h t  i s  used  as t h e  v e r t i c a l  s c a l e ,  w h i l e  the  h o r i z o n t a l  s c a l e  i s  
t he  r a d i u s  o f  t h e  zone o f  i n f l u e n c e  of  t u r b u l e n t  p e r t u r b a t i o n s ,  w i t h  the  a s s u m p t i o n  t h a t  the  
first scale significantly exceeds the second. 

4. The hydrodynamic pressure in the column with the temperature differential of Eq. (12) 
is described by Eqs. (3), (18). On the vortex axis and at its peak 

pg-~t O ~a 5 
p ' (0 ,  z') = p , - -  - ~  JZJ I ' Z -  b f I 2s8(,,-I Iz[):~ ' 

(27) 
P r I ~i  ! p' (O, r = p ,  --  ---~-t~fl,  J:,O. 

From this it follows that in counterbalance to the general increase in vortex height a 
positive differential O' decreases, and a negative differential increases the pressure at 
the summit of the vortex. For example, heated ocean surfaces or cooled land surface de- 
creases theheight of a waterspout or tornado up to the point of liquid atomization, i.e., 
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the appearance of negative pressure in the column. On the other hand, a cooled body of water 
or heated land encourages increasein column height. 

Equation (27) indicates that in the zone of tornado passage, especially if the earth is 
cooler than the cloud (@' > 0), a region of reduced pressure must exist. This has been con- 
firmed by observations (for example, storage containers explode, window glass is expelled 
outward, etc.). Without any detailed study of Eq. (27), we will indicate the possibility in 
principle of existence of positive roots of the equation p'(0, Izl) = 0. In this case the 
region of discontinuous pressure is located within the column. The presence of internal 
regions with discontinuous pressure implies the possibility of discontinuous tornadoes or 
waterspouts -- isolated vortices separated by regions with a less dense medium. Such phenom- 
ena are sometimes observed in reality. If the equation p'(0, Izl) = 0 has no positive 
roots, then at a certain load on the density discontinuity surface (when Eq. (27) is nega- 
tive) liquid atomization will occur at the top of the column. In this and other cases the 
column should be distinguishable from the planetary atomsphere when observed from space. If, 
as in the widely accepted hypothesis, the large red spot of the planet Jupiter is in fact a 
gigantic atmosphere vortex, (e.g., one generated by and breaking away from an equatorial jet), 
then the indicated effect may serve as an explanation of why this vortex, like the other 
smaller ones observed in the polar and other regions of Jupiter and Saturn [14] are detectable 
both by photography from space vehicles andvisual telescope observations. 

5. The axial velocity in the column, defined by Eqs. (ii), (12) on the density dis- 
continuity surface, is given by Eqs. (3), (19), which on the flow axis produce 

~.], Wl I z [ pg~O'b '~ ~.(O,z')=: ~j_u + U~=T, W~= (28) 

From this it follows that in the case of positive temperature differential the axial 
velocities produced by turbulent atmospheric perturbations and thermal convection add to- 
gether. Thus, e.g., if the earth is colder than the cloud cover, then within the tornado 
(i.e., in the region z' < ~' below the density discontinuity surface) only ascending flows 
will be found. 

For a negative temperature differential at small Izl the velocity in Eq. (28) is positive 
(not only because in practice U > IWII, but also because usually b' >>a ~) and therefore 
directed toward the top of the vortex. As z' +--co the first term in Eq. (28) tends to zero, 
and the second to WI < 0. Therefore, far from the top of the tornado the axial velocity is 
oriented downward into the fluid. The change in direction of the velocity of Eq. (28) with 
increase inIz!occurs sooner, the more accurately the inequality b'>> a' is satisfied, i.e., 
when the temperature differential region is significantly wider than the region of action of 
turbulent perturbations. This coincides with the conditions for tornado formation: The air 
column develops when a large cloud passes over the land and turbulence breaks off from the 
cloud edges in the form of a closed cloud, which serves as the seed for the tornado [6, 13]. 
The large surface of the cloud ensures the existence of a large region of temperature differ- 
ence between cloud and earth, while the relative smallness of the turbulence breaking off 
from the cloud edges ensures a high narrow column and deep narrow tornado funnel. Then at 
the base of the vortex axial velocities which are related to thermal convection predominate 
over those produced by the vortex itself. If the earth is warmer than the surrounding air, 
then intense descending flows will be observed along the tornado axis, produced by the high 
pressure on the earth. This is connected with the pressing into the earth of various objects 
which sometimes occurs upon passage of a tornado. Until the present time, this property of 
an atmospheric vortex could only be explained by recourse to a number of electromagnetic hy- 
potheses [2]. 

6. The radial velocity in the column is expressed by Eqso (3), (20). On the density 
discontinuity surface 

.'~:U XlW 1 r' 

.,.(r', ~') (i + z"-) ~i'- ~ I/~. x~ ~" 

With a positive temperature differential the flow pattern in the plane @ = const is 
analogous to that shown in Fig. lb. In the case of a negative differential, far from the 
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vortex axis convection flows predominate, directed toward that axis. These flows are divided 
by a surface vz(r', z') = 0 into two regions, in one of which the flow encourages increase 
in column height, while in the other a descending flow is created. 

7. The temperature differential in the flow zone is defined by Eqs. (3), (21). On the 
vortex axis and at r' § 

~Y ..... 

T' (0, z') ~ 1 + y~ q_ !/1 ~/-~.+y~ T' (r', z'):2(r.,q_z.Z+b,.Z):~,, ~ , b ' ~ - I z ' l O "  r ' -~oo .  (29) 

8. We will present some considerations which permit extension of the results of Eq. (25), 
which characterizes flow of a = a'~2/(g~2), to the region of high values for this parameter. 
Equation (25) was obtained from Eq. (13) obtained in turn from the integral 

a 

n ;/,-2. 
0 

as a § 0. As a + ~ this integral diverges [15]. For a qualitative estimate of its growth 
as a § ~ the Legendre function may be replaced by its asymptote for large values of the 
argument, since its dependence on this argument as x § 0 and x § ~ is described by one and 
the same formula. This gives 

l, ,--, ~ t" x2dx ,--, - ~  In 2a 

0 

a --> oo. 

Consequently, at large a the transverse velocity in the column grows logarithmically 
with a. Equation (13) used above is finite as a § ~. Therefore, by using Eq. (25) at large 
values of a, we can only reduce the absolute values of the extremal characteristics of the 
flow under consideration. 

We note that in constructing the tornado model possible turbulence of the flow under 
consideration was ignored. There exists a numerical calculation of a tornado [16] with and 
without consideration of turbulence, which found no significant differences between the 
laminar and turbulent cases. It is possible that these vortices possess a unique mechanism 

for suppression of turbulence, which justifies the laminar model used here. 

9. The results obtained may be extended to the case of motion of the medium under the 
action of turbulent and temperature perturbations moving over the density discontinuity 
surface with a specified constant velocity c'. Let the values ~', 0' depend solely on the 
distance r' from the center of the perturbations. Then, writing the nonstationary system of 

Navier--Stokes and thermal balance equations in the variables r' = V ( x ' - - c ' t ' ) ~  ~ '~ 
x=x--ct z' and using the fact that the boundary conditions are dependent only on ~'$ we 
will seek a solution of the system which is independent of ~. This solution can be obtained 
by the previously used replacement r' =]/(x'--c't')2~y '~ and contains information on the 
thermo- and hydrodynamic wake of the column in the atmosphere and ocean. Without any detailed 
analysis of this information, we will note that no limitations were placed above on the 
radius b' of the zone of action of temperature perturabations abovethe density discontinuity 
surface. Therefore, at sufficiently large b' Eq. (29) may be used for analysis of the 
temperature wake of a hurricane above a water surface (being limited to the simplest as- 
sumption that the hurricane, the axis of which translates in one direction at constant veloc- 
ity c', createsin a fixed circle of radius b' with center on this axis a constant temperature 
differential 0' between the water surface and the deep layers of the hurricane). From Eq. 
(29) we write the equations of the isotherms T' = const as r' ~ ~ in the form 

+ l ) ~ 4 T ' ~ ( b ' ~ + ~ )  ~ y ' ~ = ~ V ' ~ + ; ~ o s ~ ,  

( p 2  b'40'2 ' z' = p V b'2 + 7 ~ sin r 
sin s (30) 

The condition for existence of isotherms is the inequality sin~| , which in view of 
Eq. (30) reduces to study of the case where the third-order polynomial in p2 + 1 has two 
roots not less than unity. This places a limitation on the coefficients of the polynomial, 
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from which it follows that 

17 l = j x, _ e, t, ] < b, / - - t  o'  

From t h i s  i t  f o l l o w s  t h a t  a t  l a r g e  v a l u e s  of  t ime  t '  t he  i s o t h e r m s  a r e  s i g n i f i c a n t  o n l y  
f o r  3~/31T'1 ~ I @ ' l .  The r e l a x a t i o n  t i m e  t~  o f  t he  h u r r i c a n e  wake to  t e m p e r a t u r e  T '  i n  t he  

, b' /---~g Io'!. 
I T section x' = 0 can be obtained if in Eq. (31) we take the equality sign: t,=-~-~ 
p 

For t' = t$ the isotherms of Eq. (30) degenerate into a point, disappearing for t'>t~. 
Thus, the relaxation time of a hurricane or tornado thermal wake is directly proportional to 
the radius of the zone of temperature perturbations of the density discontinuity surface, 
and inversely proportional to the translation velocity of these perturbations. If the initial 
temperature differential @' = 10~ the radius of the temperature perturbation zone b' = 2000 
km (neutral cyclone stage of [12]), and the translational velocity of the cyclone c' = 1 m/ 
sec, then the relaxation time of the hurricane wake to a temperature T' = I~ t$ = 22 days. 
This result indicates very slow thermal relaxation of a hurricane wake. It agrees with 
latter data from the 27th voyage of the observation vessel Akademik Kurchatov participating 
in the joint Soviet--American program Polymode [17]. During this voyage the thermal wake of 
a relative weak hurricane in the Sargasso Sea was charted one day and 20 days after its 
formation. Study of the resulting isotherms indicated that in 20 days the relaxation of the 
thermal wake to a temperature of I~ had practically not begun. The isotherms of Eq. (30) 
in the plane yOz appear as ovals with an axis of symmetry y = 0. Analysis of experimental 
isotherms of a hurricane thermal wake [17] shows that in the process of deformation there 
is a tendency for degeneration of the isotherms into ovals. 

The author expresses his gratitude to R. I. Nigmatulin for aid in evaluation and editing 
of the results obtained. 
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C~LATION EFFECT IN DYNamIC PRESSING OF POWDERED MATERIALS 
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E. G. Grigor'ev, and D. M. Skorov 

UDC 539.374 

One of the promising methods of pressing powdered materials is the passage of a high, 
density electrical current through the powder [i, 2]. This method produces high-density 
materials with required characteristics. The density of the pressed materials is controlled 
by choice of pressing parameters: the mechanical loading applied, and the amplitude and 
duration of the current pulses. It has been established experimentally that certain param- 
eter values exist, at which the pressing process becomes unstable -- "spattering" of material 
from the press form occurs [i]. The present study will consider the possible cause of such 
"spattering" and define the range of parameter values within which this phenomenon occurs. 
The behavior of powdered material subjected to compression by applied pressure can be de- 
scribed with the aid of the "hollow sphere" model [3]. At values of the deformation rate 
tensor components in the range i03-i05 sec -~ the rheological behavior of the powder material 
corresponds quite well to that of a viscoplastic material with hardening [3, 4]. In this 
case the equation describing the change in porosity of the pressed material ~ = V/Vm, where 
v is the specific volume of the powder and v m is the specific volume of the bulk material 
forming the powder (a > i), has the form [3] 

"1 -i (~_~_ i)~,.:~/ -I- 3 m,  0 ~ ( a  - J ) '  
~' 4 

X In ~ -p- 3m 

(i) 

where Reo = (ao/~)Zp/o; ~ = Yo/p; z = ao 0~; ao is the characteristic size of the pores, 
is viscosity, p is the density of the powde r material, p is the external pressing pressure, 
So is the initial porosity value. The dot indicates differentiation with respect to dimen- 
sionless time t/m. The material hardening law is chosen in the form [3] 

v toO+ 

where Yo is the initial yield point; m, n are hardening parameters; ~P is the accumulated 
plastic deformation. 

Depending on the value of thd parameters Reo and B, Eq. (i) produces two qualitatively 
different types of solution ~(t): the first consists of solutions defining a finite porosity 
value for pressing with a > i, while the second produces a final porosity of ~ = 1 (poreless 
material) with ~ # 0 (at the moment a = i). The solutions of the second type can be analyzed 
conveniently by commencing from the corresponding equation for change in internal radius of 
a "hollow sphere", a(t), which can be obtained from Eq. (i), considering that 

<, (t___)) { ~  (t) -- i.'il,':~ d<, F T  
�9 , ..... ,,0 ..... L % - - i ]  ' ~t ..... ~ - 7 '  

w h e r e  u i s  t h e  d i m e n s i o n l e s s  r a t e  o f  m o t i o n  o f  t h e  i n t e r n a l  r a d i u s  o f  t h e  " h o l l o w  s p h e r e "  a n d  
is the dimensionless internal radius of the same "hollow sphere." 

With such notation Eq. (i) takes on the form 
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